Approximation Complexity of Maximum A Posteriori Inference in Sum-Product Networks
نویسندگان
چکیده
We discuss the computational complexity of approximating maximum a posteriori inference in sum-product networks. We first show NP-hardness in trees of height two by a reduction from maximum independent set; this implies non-approximability within a sublinear factor. We show that this is a tight bound, as we can find an approximation within a linear factor in networks of height two. We then show that, in trees of height three, it is NP-hard to approximate the problem within a factor 2 for any sublinear function f of the size of the input n. Again, this bound is tight, as we prove that the usual max-product algorithm finds (in any network) approximations within factor 2c·n for some constant c < 1. Last, we present a simple algorithm, and show that it provably produces solutions at least as good as, and potentially much better than, the max-product algorithm. We empirically analyze the proposed algorithm against max-product using synthetic and real-world data.
منابع مشابه
Maximum A Posteriori Inference in Sum-Product Networks
Sum-product networks (SPNs) are a class of probabilistic graphical models that allow tractable marginal inference. However, the maximum a posteriori (MAP) inference in SPNs is NP-hard. We investigate MAP inference in SPNs from both theoretical and algorithmic perspectives. For the theoretical part, we reduce general MAP inference to its special case without evidence and hidden variables; we als...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملAdaptive Tree CPDs in Max-Product Belief Propagation
In general, the problem of computing the maximum a posteriori (MAP) assignment in a Bayesian network is computationally intractable. In some cases, such as in tree-structured networks, inference can be done efficiently and exactly. However, there are still practical challenges when trying to do inference in networks containing variables with large cardinalities. In this case, representing and m...
متن کاملCollapsed Variational Inference for Sum-Product Networks
Sum-Product Networks (SPNs) are probabilistic inference machines that admit exact inference in linear time in the size of the network. Existing parameter learning approaches for SPNs are largely based on the maximum likelihood principle and are subject to overfitting compared to more Bayesian approaches. Exact Bayesian posterior inference for SPNs is computationally intractable. Even approximat...
متن کاملFast Inference and Learning with Sparse Belief Propagation
Even in trees, exact probabilistic inference can be expensive when the cardinality of the variables is large. This is especially troublesome for learning, because many standard estimation techniques, such as EM and conditional maximum likelihood, require calling an inference algorithm many times. In max-product inference, a standard heuristic for controlling this complexity in linear chains is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1703.06045 شماره
صفحات -
تاریخ انتشار 2017